Nowcasting and Short-term Forecasting of Thunderstorms and Severe Weather Using OSCER

Keith A. Brewster¹ Jerry Brotzge¹, Kevin W. Thomas¹, Jidong Gao¹, Ming Xue^{1,2} and Yunheng Wang¹ ¹Center for Analysis and Prediction of Storms ²School of Meteorology University of Oklahoma

Oklahoma Supercomputing Symposium October 12, 2011

CASA & NEXRAD Radars

- CASA NetRad
 NSF ERC: Collaborative Adaptive Sensing of the Atmosphere
 - X-Band Dual-Pol Radars
 - 40 km nominal range
 - Collaborative, Adaptive Scanning
 - Fill-in below coverage of NEXRAD
 - Toward phased-array panels low-cost!
- NEXRAD

casa

- S-Band Radars
- 14 covering domain
- Data used out to 230 km

CASA NetRad Network

Spring 2007-2009 Near-Real Time Forecast Domain

Improving the MPI Efficiency of Radar Remapper

Radar data are converted from 3-D polar to 3-D Cartesian coordinates.

Original Strategy: Horizontal Domain Decomposition

Each processor finds solution on columns within its domain

Potentially uneven workload

Improving the MPI Efficiency of Radar Remapper

Radar data are converted from polar to Cartesian coordinates of model grid.

Improved Algorithm

For each radar

- 1. Within domain decomposition, determine columns having valid data
- 2. Collect columns with valid data in

1-D array

- 3. Distribute work for these columns uniformly among processors
- 4. Execute remapping algorithm MPI
- 5. Distribute results to original home processor for output.

Real-Time NWP Runs 2009

- 9 Weeks in Spring Season
- 6-hour 1-km resolution forecasts
- Use Radar Reflectivity & Radial Velocity
- •3DVAR wind with ADAS cloud analysis

•ARPS Model

casa

•Runs posted to Web in real-time http://www.caps.ou.edu/wx/casa/ • Run on Parallel Linux Boxes

OU OSCER

600 processors/2 runs at a time

- •Total Run Time 1.5 hours
- •Two Runs in Near Real-time

CASA &	No CASA Data
NEXRAD	

2007-2009 Assimilation Strategy

Manual on-demand model start-up for storms in the network.

Assimilation vs. Analysis Wind Speed/Vectors 500m AGL 0220 UTC

Forecast temperature perturbation + Vort. at z =500m AGL

2010 Nowcast Strategy

Domain size: 350 x 320 x 53. Total Run Time < 10 min 800 cores (100 dual-quad-core servers)

Forecast model run every 10-min whenever the radars were operating (during precipitation). Casa

Sample: 10 May 2010 21:40

From NWS Norman

2140 UTC Nowcast/Forecast T=05 min (assimilated state)

T=15 min 2150

casa

T=25 min 2200

T=35 min 2210

T=45 min 2220

T=55 min 2230

casa

Data Assimilation Accomplishments

- Developed a very efficient real-time data assimilation, nowcasting and forecasting system
- Demonstrated initial impacts of CASA data on cloud-scale analysis and forecasting
- Advanced *real-time* storm-scale assimilation to where we can directly compare forecasted small-scale vorticity features to radar signatures
 - Major step towards "warn on forecast"

Ongoing Work Using CASA Data

- Objective Verification of recent forecasts, to also include object-based methods.
 - Rainfall (using QPE field from NSSL)
 - Vorticity Centers
- Methods to improve data assimilation
 - Improvements to current algorithms
 - More sophisticated, but expensive, algorithms

Acknowledgments: NSF Sponsors CASA ERC Computing: OU OSCER

In 2012 moving the radars to the Dallas/Ft Worth Metro

820

Fort Worth

KFWS

81

Imagery Date: 2/8/2010

65 km

© 2011 Google © 2011 Europa Technologies Texas Orthoimagery Program

35 Denton

62010 GOOg

lat 32.719104° lon -97.113684° elev 173 m

75

80

20

45

175

Plano

635

77 Irving 🛧

Eye alt 278.17 kn

More radars will be added during the year.

35 Denton

820)

Fort Worth

KFWS

75

80

20

45

3

175

5

Plano

635

77 Irving

81

© 2011 Google © 2011 Europa Technologies Texas Orthoimagery Program

lat 32.719104° lon -97.113684° elev 173 m

65 km

-Eye alt 278.17 km 🔘

COOSIC GOOSIC