
Phase-Aware Scheduling for

Heterogeneous Systems from

Multicore Processors to the Cloud

This work was supported in part by NSF award no. 1018771

Lina Sawalha

Dr. Ronald D. Barnes

Dr. Monte P. Tull

Outline

♦ Introduction

♦ Goals

♦ Motivation

♦ Phase-identification based scheduling

♦ Phase-IPC scheduling method

♦ Phase-Sampling scheduling method

♦ Results for heterogeneous multicore processors

♦ Scheduling jobs in the cloud

♦ Conclusions
2

Introduction

♦ Heterogeneous multiprocessor systems offer

advantages in terms of both performance and

power consumption.

♦ Assigning applications to the different types of

cores is complicated.

♦ Asymmetric cores different performance

♦ Different phases of execution for each

application

3

Introduction

4

♦ Correlation between executing phases and

program behavior

♦ Dynamic Scheduler:

♦ Identifies program phases

♦ Stores information about phases

♦ Recognizes occurrences of the same phases

♦ Reuse stored information for scheduling

♦ Extending phase-based scheduling to the cloud

Motivation

0

0.5

1

1.5

2

P
e
rf

o
rm

a
n

c
e
 (

µ(µ (µ(µ
−− −−
o

p
e
ra

ti
o

n
s

p
e
r

c
y
c
le

)

IPC_OO

IPC_IO

0

0.5

1

1.5

2

2.5

1
2
1
9

4
3
7

6
5
5

8
7
3

1
0
9
1

1
3
0
9

1
5
2
7

1
7
4
5

1
9
6
3

2
1
8
1

2
3
9
9

2
6
1
7

2
8
3
5

3
0
5
3

3
2
7
1

3
4
8
9

3
7
0
7

3
9
2
5

4
1
4
3

4
3
6
1

4
5
7
9

4
7
9
7

5
0
1
5

5
2
3
3

5
4
5
1

5
6
6
9

5
8
8
7

6
1
0
5

6
3
2
3

6
5
4
1

6
7
5
9

6
9
7
7

7
1
9
5

7
4
1
3

7
6
3
1

7
8
4
9

8
0
6
7

8
2
8
5

8
5
0
3

8
7
2
1

8
9
3
9

9
1
5
7

9
3
7
5

9
5
9
3

9
8
1
1

R
a
ti

o
 o

f
IP

C
 b

e
tw

e
e
n

 I
O

a
n

d
 O

O

Intervals of 10k retired instructions for bzip2 application

Related Work

♦ Static Approaches:

[Chen’09], [Shelepov’08 & 09], [Lakshminarayana’09]

♦ Dynamic Approaches:

♦ Heuristic Sampling [Kumar’04], [Becchi’06]

♦ History-aware scheduler [Jooya’09]

♦ Static/Dynamic: Phase-based approach
[Sondag’11]

6

Phase Identification Method

♦ Working set signatures [Dhodapkar’02]*

♦ Working set: Compressed representation of

program behavior

♦ Non-overlapping windows of retired instructions

♦ Signature calculated by hashing some bits from

program counter to identify a working set

* A. S. Dhodapkar and J. E. Smith, “Managing multi-configuration hardware via dynamic working set analysis,” ACM

SIGARCH Computer Architecture News, vol. 30, no. 2, pp. 233–244, May 2002.

7

Phase-Identification Based

Scheduling

Reuse information from SHT
and choose schedule

Start Instruction retired Update signature

End of
window

?

Compare signature with
that of previous window

Differ.
> 0.5 ?

Same phase, don’t
change schedule

New phase

Is
phase
in SHT

?

Perform sampling &
record information

in SHT

YesNo

No

Yes

Yes

No

Phase-Sampling

♦ Sampled performance

evaluation

♦ New set of phases sampling

♦ Select the highest throughput

schedule & record in the SHT

♦ Reuse the recorded schedule

when encountering the same

set of phases again

9

1A 2A 3A 4A

1A 2A 3A 4B

.

.

.

1C 2B 3B 4D

1A 2A 3A 4B

1C 2B 3A 4B

.

.

.

Thread/phase no.

1A 2A 3A 4A

1A 2A 3A 4B

1C 2B 3B 4D

1A 2A 3A 4B

1C 2B 3A 4B

1C 2B

3A 4B1A 2A 3A 4B

new phase

new phase

new phase

repeated

Phase-IPC

♦ New phase for one thread

Sampling for that thread only

♦ Record IPC for each phase on

each core along with the

signature

♦ Best schedule predicted based

on estimated throughput of all

the different combinations

10

1A 2A 3A 4A

1A 2A 3A 4B

.

.

1A 2B 3B 4B

.

.

.

1C 2B 3B 4D

1A 2A 3A 4B

1C 2B 3A 4B

.

.

.

Thread/phase no.

1A 2A 3A 4A

4B

new phases

new phase

Thread 4

1C
new phase

Threads 1&4
4D

repeated1A 2A 3A 4B

1C 2B 3A 4B
repeated

1C

4B

2B

3A

Evaluation Metrics

♦ Need a metric that balances throughput and

individual thread performance

♦ Instructions per cycle (IPC)

♦ Weighted Speedup:
���	

�����	
	
�
��

���	
������

	
�
��

	

♦ Requires oracle knowledge of best IPC

♦ Not suitable input for scheduling heuristic

♦ Used for comparing our approaches with other

methods

11

Methodology

♦ Soonergy Simulator: A cycle-accurate

architectural and micro-architectural simulator

♦ 15 integer and floating-point benchmarks from

SPEC CPU2006 benchmark suite

♦ 250 million x86 instructions

♦ Four different core configurations:

12

Parameter Core 0 Core 1 Core 2 Core 3

Execution IO OO OO OO

Issue width 4 4 3 2

L1 cache 32KB 32KB 16KB 16KB

ROB N/A 128 96 64

RS N/A 32 24 16

Results

13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
M

S
 a

n
d

 S
tD

e
v
 f

o
r

d
if

fe
re

n
t

w
in

d
o

w
 s

iz
e
s

SPEC CPU 2006 benchmarks

5k - StDev 5k - WMS
10k - StDev 10k - WMS
20k - StDev 20k - WMS
50k - StDev 50k - WMS
100k - StDev 100k - WMS
250k - StDev 250k - WMS

Results

14

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5
K

1
0

K
2

0
k

5
0

k
1

0
0

k
2

5
0

k

5
K

1
0

K
2

0
k

5
0

k
1

0
0

k
2

5
0

k

5
K

1
0

K
2

0
k

5
0

k
1

0
0

k
2

5
0

k

5
K

1
0

K
2

0
k

5
0

k
1

0
0

k
2

5
0

k

5
K

1
0

K
2

0
k

5
0

k
1

0
0

k
2

5
0

k

5
K

1
0

K
2

0
k

5
0

k
1

0
0

k
2

5
0

k

5
K

1
0

K
2

0
k

5
0

k
1

0
0

k
2

5
0

k

5
K

1
0

K
2

0
k

5
0

k
1

0
0

k
2

5
0

k

5
K

1
0

K
2

0
k

5
0

k
1

0
0

k
2

5
0

k

5
k

1
0

k
2

0
k

5
0

k
1

0
0

k
2

5
0

k

bzip2 hmmer gobmk lbm mcf namd perl povray soplex average

P
e

rc
e

n
t

o
f

w
in

d
o

w
 t

y
p

e
s

 i
n

 p
h

a
s

e
s

Repeated-windows single-phases Repeated-windows repeated-phases Transitory phases

Performance Results

15

2.6

2.8

3

3.2

3.4

3.6

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 hmean

W
e
ig

h
te

d
 s

p
e
e
d

u
p

4-tuple of SPEC CPU2006 programs

Phase-IPC Phase-Sampling Average Kumar Worst Ideal

HOW MIGHT THIS WORK FOR

THE CLOUD?

Cloud Computing

♦ Distributed computing

♦ Computing nodes spread over different places

♦ Heterogeneous computing nodes

♦ Need to find the best job to node map

♦ Use phase-aware scheduling to re-schedule

jobs during runtime

17

Cloud World Description

♦ World:

♦ 1000 km x 1000 km

♦ 100 computing nodes

♦ 10 submission sites

♦ Jobs

♦ SPEC CPU 2006 benchmarks

♦ Random exponential arrival time

♦ Random exponential length

♦ Communication cost by distance

18

World Map

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000

App sites Nodes type 1 Nodes type 2 Nodes type 3 Nodes type 4

19

Random Scheduling

♦ The scheduler assigns a free computing node

randomly to each job.

♦ Distance of nodes is not considered

♦ Jobs are not rescheduled dynamically

♦ Wait list contains jobs waiting for free nodes

♦ Not efficient scheduling method

20

Proposed Phase-Guided Scheduling

♦ Each execution phase evaluated on the

different node types

♦ If available free nodes of different types,

replicate job on the different node types

♦ After window elapsed choose the best performing

node

♦ Kill jobs on other nodes

21

Phase-Based Scheduling

♦ If no free nodes available for evaluation

♦ switch with closest job not in evaluation period

♦ Evaluate current job and switched jobs

♦ Choose the assignment that leads to the best

overall performance for the current and

switched jobs.

22

Future Work

♦ More on scheduling jobs for the cloud

♦ Approach can be extended to fully multithreaded

multi-program workload

♦ Fast context switch for multicore processor

♦ Power consumption

23

Conclusions

♦ Dynamic Scheduler:

♦ Identifies program phases

♦ Stores information about phases

♦ Recognizes occurrences of the same phases

♦ Reuse stored information for scheduling

♦ Phase-Sampling outperforms Phase-IPC and

previous scheduling methods but incurs more

sampling

♦ Phase-IPC requires many fewer sampling intervals

and no permutation of threads across each core type
24

QUESTIONS?

